The S-estimator in Change-point Random Model with Long Memory
نویسنده
چکیده
The paper considers two-phase random design linear regression models. The errors and the regressors are stationary long-range dependent Gaussian. The regression parameters, the scale parameters and the change-point are estimated using a method introduced by Rousseeuw and Yohai [33]. This is called S-estimator and it has the property that is more robust than the classical estimators; the outliers don’t spoil the estimation results. Some asymptotic results, including the strong consistency and the convergence rate of the S-estimators, are proved.
منابع مشابه
A robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملChange Point Estimation of a Process Variance with a Linear Trend Disturbance
When a change occurs in a process, one expects to receive a signal from a control chart as quickly as possible. Upon the receipt of signal from the control chart a search for identifying the source of disturbance begins. However, searching for assignable cause around the signal time, due to the fact that the disturbance may have manifested itself into the rocess sometimes back, may not always l...
متن کاملModeling Gasoline Consumption Behaviors in Iran Based on Long Memory and Regime Change
In this study, for the first time, we model gasoline consumption behavior in Iran using the long-term memory model of the autoregressive fractionally integrated moving average and non-linear Markov-Switching regime change model. Initially, the long-term memory feature of the ARFIMA model is investigated using the data from 1927 to 2017. The results indicate that the time series studied has a lo...
متن کاملIsotonic Change Point Estimation in the AR(1) Autocorrelated Simple Linear Profiles
Sometimes the relationship between dependent and explanatory variable(s) known as profile is monitored. Simple linear profiles among the other types of profiles have been more considered due to their applications especially in calibration. There are some studies on the monitoring them when the observations within each profile are autocorrelated. On the other hand, estimating the change point le...
متن کاملIdentifying the time of a step change in AR(1) auto-correlated simple linear profiles
Assuming a first-order auto-regressive model for the auto-correlation structure between observations, in this paper, a transformation method is first employed to eliminate the effect of auto-correlation. Then, a maximum likelihood estimator (MLE) of a step change in the parameters of the transformed model is derived and three separate EWMA control charts are used to monitor the parameters of th...
متن کامل